15 research outputs found

    A multi-category decision support framework for the Tennessee Eastman problem

    Get PDF
    The paper investigates the feasibility of developing a classification framework, based on support vector machines, with the correct properties to act as a decision support system for an industrial process plant, such as the Tennessee Eastman process. The system would provide support to the technicians who monitor plants by signalling the occurrence of abnormal plant measurements marking the onset of a fault condition. To be practical such a system must meet strict standards, in terms of low detection latency, a very low rate of false positive detection and high classification accuracy. Experiments were conducted on examples generated by a simulation of the Tennessee Eastman process and these were preprocessed and classified using a support vector machine. Experiments also considered the efficacy of preprocessing observations using Fisher Discriminant Analysis and a strategy for combining the decisions from a bank of classifiers to improve accuracy when dealing with multiple fault categories

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Enhance air-cooled heat exchanger performance

    No full text
    Hydrocarbon Processing801249-55HYPR
    corecore